[1] J. W. Gibbs, Elementary principles in statistical mechanics. Scribner’s sons, 1902 [Online]. Available:

[2] S. Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Bachelier, 1824.

[3] S. Carnot, Reflections on the motive power of heat. John Wiley & Sons, 1897 [Online]. Available:

[4] B. Clapeyron, “Scientific Memoirs,” R. Taylor, Ed. Richard; John E. Taylor, 1837 [Online]. Available:

[5] R. Clausius, “The Mechanical Theory of Heat with its Applications to the Steam Engine and to the Physical Properties of Bodies,” T. A. Hirst, Ed. Taylor; Francis, 1867 [Online]. Available:

[6] R. Clausius, “The Mechanical Theory of Heat with its Applications to the Steam Engine and to the Physical Properties of Bodies,” T. A. Hirst, Ed. Taylor; Francis, 1867 [Online]. Available:

[7] S. G. Brush, The Kind Of Motion We Call Heat. Volume 1. North Holland, 1986.

[8] E. Garber, “Aspects of the Introduction of Probability into Physics,” Centaurus, vol. 17, no. 1, pp. 11–40, Mar. 1973, doi: 10.1111/j.1600-0498.1973.tb00182.x.

[9] R. Clausius, “On the mean length of the paths described by the separate molecules of gaseous bodies on the occurrence of molecular motion: together with some other remarks upon the mechanical theory of heat,” Philos. Mag., vol. 17, no. 112, pp. 81–91, Feb. 1859, doi: 10.1080/14786445908642626.

[10] B. Mahon, The man who changed everything. Wiley, 2003 [Online]. Available:

[11] J. C. Maxwell, “On the Stability of the Motion of Saturn’s Rings; an Essay which obtained the Adams’ Prize for the Year 1856, in the University of Cambridge,” Mon. Notices Royal Astron. Soc, vol. 19, no. 8, pp. 297–304, Jun. 1859, doi: 10.1093/mnras/19.8.297.

[12] J. C. Maxwell, “Illustrations of the dynamical theory of gases.—Part I. On the motions and collisions of perfectly elastic spheres,” Philos. Mag., vol. 19, no. 124, pp. 19–32, Jan. 1860, doi: 10.1080/14786446008642818.

[13] M. J. Klein, “The Development of Boltzmann’s Statistical Ideas,” in The boltzmann equation, 1973, pp. 53–106, doi: 10.1007/978-3-7091-8336-6_4.

[14] C. Cercignani, “Chance in Physics: Foundations and Perspectives,” in Chance in physics: Foundations and perspectives, J. Bricmont, G. Ghirardi, D. Dürr, F. Petruccione, M. C. Galavotti, and N. Zanghi, Eds. Springer Berlin Heidelberg, 2001, pp. 25–38.

[15] S. G. Brush, The Kind Of Motion We Call Heat. Volume 2. North Holland, 1986.

[16] Lebowitz, J. L. and Penrose, O., “Modern ergodic theory,” Phys. Today, vol. 26, no. 2, p. 23, Dec. 1973, doi: 10.1063/1.3127948.

[17] G. Eknoyan, “Adolphe Quetelet (17961874)—the average man and indices of obesity,” Nephrol. Dial. Transplant., vol. 23, no. 1, pp. 47–51, Sep. 2007, doi: 10.1093/ndt/gfm517.

[18] Comte, A. and Martineau, H., The Positive Philosophy of Auguste Comte. Cambridge University Press, 2009.

[19] G. Jahoda, “Quetelet and the emergence of the behavioral sciences,” SpringerPlus, vol. 4, no. 1, pp. 1–10, Dec. 2015, doi: 10.1186/s40064-015-1261-7.

[20] Watson, H. W. and Galton, F., “On the Probability of the Extinction of Families,” J. Royal Anthropol. Inst., vol. 4, pp. 138–144, 1875, doi: 10.2307/2841222.

[21] D. G. Kendall, “Branching Processes Since 1873,” J. London Math. Soc., vols. s1-41, no. 1, pp. 385–406, Jan. 1966, doi: 10.1112/jlms/s1-41.1.385.

[22] F. Galton, Inquiries into Human Faculty and Its Development. Macmillan, 1883 [Online]. Available:

[23] S. S. S., “Physics, Community and the Crisis in Physical Theory,” Phys. Today, vol. 46, no. 11, pp. 34–40, Nov. 1993, doi: 10.1063/1.881368.

[24] A. N. Shiryayev, Selected Works of A. N. Kolmogorov. Springer, Dordrecht, 1992.

[25] T. E. Harris, The Theory of Branching Processes. Springer-Verlag Berlin Heidelberg, 1963 [Online]. Available:

[26] N. Metropolis, “The Beginning of the Monte Carlo Method,” Los Alamos Science, vol. 15, 1983 [Online]. Available:

[27] B. Nicolas, A Short History of Mathematical Population Dynamics. Springer, London, 2011.

[28] Broadbent, S. R. and Hammersley, J. M., “Percolation processes: I. Crystals and mazes,” Math. Proc. Cambridge Philos. Soc., vol. 53, no. 3, pp. 629–641, Jul. 1957, doi: 10.1017/S0305004100032680.

[29] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948, doi: 10.1002/j.1538-7305.1948.tb01338.x.

[30] E. T. Jaynes, “Information Theory and Statistical Mechanics,” Phys. Rev., vol. 106, no. 4, pp. 620–630, May 1957, doi: 10.1103/PhysRev.106.620.

[31] Pressé, S., Ghosh, K., Lee, J., and Dill, K. A., “Principles of maximum entropy and maximum caliber in statistical physics,” Rev. Mod. Phys., vol. 85, no. 3, pp. 1115–1141, Jul. 2013, doi: 10.1103/RevModPhys.85.1115.

[32] H. B. Callen, Thermodynamics and an introducion to termostatistics. John Wiley & Sons, 1985 [Online]. Available:

[33] P. W. Bridgman, The Nature of Thermodynamics. Harvard University Press, 1943 [Online]. Available:

[34] A. Ben-Naim, A Farewell to Entropy. World Scientific Publishing Company, 2008.

[35] P. W. Anderson, “More Is Different,” Science, vol. 177, no. 4047, pp. 393–396, Aug. 1972, doi: 10.1126/science.177.4047.393.

[36] L. Pietronero, “Complexity ideas from condensed matter and statistical physics,” Europhys. News, vol. 39, no. 6, pp. 26–29, Nov. 2008, doi: 10.1051/epn:2008603.

[37] P. W. Anderson, More and Different. World Scientific Publishing Company, 2011.

[38] Mezard, M. and Montanari, A., Information, Physics, and Computation. New York, NY, USA: Oxford University Press, Inc., 2009 [Online]. Available:

[39] Castiglione, P., Falcioni, M., Lesne, A., and Vulpiani, A., Chaos and Coarse Graining in Statistical Mechanics. Cambridge University Press, 2008 [Online]. Available:

[40] E. N. Lorenz, “Deterministic Nonperiodic Flow,” J. Atmospheric Sci., vol. 20, no. 2, pp. 130–141, Mar. 1963, doi: 10.1175/1520-0469(1963)020<0130:dnf>;2.

[41] E. N. Lorenz, “Section of Planetary Sciences: The Predictability of Hydrodynamics Flow,” Trans. N. Y. Acad. Sci., vol. 25, no. 4 Series II, pp. 409–432, Feb. 1963, doi: 10.1111/j.2164-0947.1963.tb01464.x.

[42] R. M. May, “Simple mathematical models with very complicated dynamics,” Nature, vol. 261, no. 5560, pp. 459–467, Jun. 1976, doi: 10.1038/261459a0.

[43] M. Schroeder, Fractals, Chaos, Power Laws. W. H. Freeman; Company, 1991.

[44] Bak, P., Tang, C., and Wiesenfeld, K., “Self-organized criticality: An explanation of the 1/f noise,” Phys. Rev. Lett., vol. 59, no. 4, pp. 381–384, Jul. 1987, doi: 10.1103/PhysRevLett.59.381.

[45] Watkins, N. W., Pruessner, G., Chapman, S. C., Crosby, N. B., and Jensen, H. J., “25 Years of Self-organized Criticality: Concepts and Controversies,” Space Sci. Rev., vol. 198, no. 1, pp. 3–44, Jan. 2016, doi: 10.1007/s11214-015-0155-x.

[46] C. S. Holling, “Understanding the Complexity of Economic, Ecological, and Social Systems,” Ecosystems, vol. 4, no. 5, pp. 390–405, Aug. 2001, doi: 10.1007/s10021-001-0101-5.

[47] H. A. Simon, “The Architecture of Complexity,” Proc. Am. Philos. Soc, vol. 106, no. 6, pp. 467–482, Dec. 1962, doi: 10.2307/985254.

[48] M. E. J. Newman, “Resource Letter CS1: Complex Systems,” Am. J. Phys, vol. 79, no. 8, p. 800, Jul. 2011, doi: 10.1119/1.3590372.

[49] G. Parisi, “Complex systems: a physicist’s viewpoint,” Physica A, vol. 263, no. 1, pp. 557–564, Feb. 1999, doi: 10.1016/S0378-4371(98)00524-X.

[50] J. L. Moreno, Who shall survive?: A new approach to the problem of human interrelations. Nervous; Mental Disease Publishing Co, 1934.

[51] M. Zhang, “Social Network Analysis: History, Concepts, and Research,” in Handbook of social network technologies and applications, Springer US, 2010, pp. 3–21.

[52] S. Milgram, “The Small-World Problem,” Psychol. Today, vol. 1, no. 1, May 1967.

[53] M. Gluckman, The judicial process among the barotse of northern rhodesia. Manchester University Press, 1955.

[54] Park, J. and Newman, M. E. J., “Statistical mechanics of networks,” Phys. Rev. E, vol. 70, no. 6, p. 066117, Dec. 2004, doi: 10.1103/PhysRevE.70.066117.

[55] Holland, P. W. and Leinhardt, S., “An Exponential Family of Probability Distributions for Directed Graphs,” J. Am. Stat. Assoc., vol. 76, no. 373, pp. 33–50, Mar. 1981, doi: 10.2307/2287037.

[56] Duncan J. W. and Steven H. S., “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998, doi: 10.1038/30918.

[57] D. J. Watts, Small Worlds – The Dynamics of Networks between Order and Randomness. Princeton University Press, 2003 [Online]. Available:

[58] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no. 6825, pp. 268–276, Mar. 2001, doi: 10.1038/35065725.

[59] Stanley, H. E. et al., “Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics,” Physica A, vol. 224, no. 1, pp. 302–321, Feb. 1996, doi: 10.1016/0378-4371(95)00409-2.

[60] Cimini, G., Squartini, T., Saracco, F., Garlaschelli, D., Gabrielli, A., and Caldarelli, G., “The statistical physics of real-world networks,” Nat. Rev. Phys., vol. 1, no. 1, pp. 58–71, Jan. 2019, doi: 10.1038/s42254-018-0002-6.

[61] Caldarelli, G., Wolf, S., and Moreno, Y., “Physics of humans, physics for society,” Nat. Phys., vol. 14, no. 9, p. 870, Sep. 2018, doi: 10.1038/s41567-018-0266-x.

[62] Heesterbeek, J. A. P. and Roberts, M. G., “How mathematical epidemiology became a field of biology: a commentary on Anderson and May (1981) ‘The population dynamics of microparasites and their invertebrate hosts’,” Philos. Trans. R. Soc. Lond. B Biol. Sci., vol. 370, no. 1666, p. 20140307, Apr. 2015, doi: 10.1098/rstb.2014.0307.

[63] Lazer, D., Kennedy, R., King, G., and Vespignani, A., “The Parable of Google Flu: Traps in Big Data Analysis,” Science, vol. 343, no. 6176, pp. 1203–1205, Mar. 2014, doi: 10.1126/science.1248506.

[64] Lazer, D. and Radford, J., “Data ex Machina: Introduction to Big Data,” Annu. Rev. Sociol., vol. 43, no. 1, pp. 19–39, Jul. 2017, doi: 10.1146/annurev-soc-060116-053457.

[65] McFarland, D. A., Lewis, K., and Goldberg, A., “Sociology in the Era of Big Data: The Ascent of Forensic Social Science,” Am. Soc., vol. 47, no. 1, pp. 12–35, Mar. 2016, doi: 10.1007/s12108-015-9291-8.

[66] Halford, S. and Savage, M., “Speaking Sociologically with Big Data: Symphonic Social Science and the Future for Big Data Research,” Sociology, vol. 51, no. 6, pp. 1132–1148, Jun. 2017, doi: 10.1177/0038038517698639.

[67] Henrich, J., Heine, S. J., and Norenzayan, A., “The weirdest people in the world?” Behav. Brain Sci., vol. 33, nos. 2-3, pp. 61–83, Jun. 2010, doi: 10.1017/S0140525X0999152X.

[68] Martı́n-Martı́n, A., Orduna-Malea, E., Ayllón, J. M., and Delgado López-Cózar, E., “Back to the past: On the shoulders of an academic search engine giant,” Scientometrics, vol. 107, no. 3, pp. 1477–1487, Mar. 2016, doi: 10.1007/s11192-016-1917-2.

[69] Acharya, A. et al., “Rise of the Rest: The Growing Impact of Non-Elite Journals,” arXiv. 2014 [Online]. Available:

[70] N. Marres, Digital Sociology: The Reinvention of Social Research. Wiley, 2017 [Online]. Available:

[71] M. Castells, The Rise of the Network Society 2nd Ed. John Wiley & Sons, 2010 [Online]. Available:

[72] E. O. Wilson, Consilience: The unity of knowledge. Vintage Books, 1999 [Online]. Available:

[73] M. Newman, Networks. Oxford University Press, 2018.

[74] Latora, V., Nicosia, V., and Russo, G., Complex Networks. Cambridge University Press, 2019 [Online]. Available:

[75] A.-L. Barabási, Network Science. Cambridge University Press, 2016 [Online]. Available:

[76] Erdős, P. and Rényi, A., “On random graphs,” Publ. Math., vol. 6, p. 2, 1959 [Online]. Available:

[77] Aleta, A. and Moreno, Y., “Multilayer Networks in a Nutshell,” Annu. Rev. Condens. Matter Phys., vol. 10, no. 1, pp. 45–62, Mar. 2019, doi: 10.1146/annurev-conmatphys-031218-013259.

[78] Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., and Porter, M. A., “Multilayer networks,” J. Complex Netw., vol. 2, no. 3, pp. 203–271, Jul. 2014, doi: 10.1093/comnet/cnu016.

[79] Aleta, A., Meloni, S., and Moreno, Y., “A Multilayer perspective for the analysis of urban transportation systems,” Sci. Rep., vol. 7, p. 44359, Mar. 2017, doi: 10.1038/srep44359.

[80] Barrat, A., Barthelemy, M., and Vespignani, A., Dynamical Processes on Complex Networks. Cambridge University Press, 2008.

[81] Orsini, C. et al., “Quantifying randomness in real networks,” Nat. Commun., vol. 6, p. 8627, Oct. 2015, doi: 10.1038/ncomms9627.

[82] Payrató-Borràs, C., Hernández, L., and Moreno, Y., “Breaking the Spell of Nestedness: The Entropic Origin of Nestedness in Mutualistic Systems,” Phys. Rev. X, vol. 9, no. 3, Aug. 2019, doi: 10.1103/physrevx.9.031024.

[83] Fründ, J., McCann, K. S., and Williams, N. M., “Sampling bias is a challenge for quantifying specialization and network structure: Lessons from a quantitative niche model,” Oikos, vol. 125, no. 4, pp. 502–513, Apr. 2016, doi: 10.1111/oik.02256.

[84] de Aguiar, M. A. M. et al., “Revealing biases in the sampling of ecological interaction networks,” bioRxiv, 2018, doi: 10.1101/328245.

[85] P. Pöyhönen, “A Tentative Model for the Volume of Trade between Countries,” Rev. World Econ., vol. 90, pp. 93–100, 1963, doi: 10.2307/40436776.

[86] G. A. P. Carrothers, “An Historical Bedew of the Gravity and Potential Concepts of Human Interaction,” J. Am. Inst. Plan., vol. 22, no. 2, pp. 94–102, Jun. 1956, doi: 10.1080/01944365608979229.

[87] Barabási, A.-L. and Albert, R., “Emergence of Scaling in Random Networks,” Science, vol. 286, no. 5439, pp. 509–512, Oct. 1999, doi: 10.1126/science.286.5439.509.

[88] Squartini, T., Mastrandrea, R., and Garlaschelli, D., “Unbiased sampling of network ensembles,” New J. Phys., vol. 17, no. 2, p. 023052, Feb. 2015, doi: 10.1088/1367-2630/17/2/023052.

[89] Maslov, S. and Sneppen, K., “Specificity and Stability in Topology of Protein Networks,” Science, vol. 296, no. 5569, pp. 910–913, May 2002, doi: 10.1126/science.1065103.

[90] “The Koblenz Network Collection (KONECT).”

[91] Rao, A. R., Jana, R., and Bandyopadhyay, S., “A Markov Chain Monte Carlo Method for Generating Random (0, 1)-Matrices with Given Marginals,” Sankhya, vol. 58, no. 2, pp. 225–242, Jun. 1996, doi: 10.2307/25051102.

[92] Fosdick, B., Larremore, D., Nishimura, J., and Ugander, J., “Configuring Random Graph Models with Fixed Degree Sequences,” SIAM Rev., vol. 60, no. 2, pp. 315–355, 2018, doi: 10.1137/16M1087175.

[93] Moreno, J. L. and Jennings, H. H., “Statistics of Social Configurations,” Sociometry, vol. 1, no. 3/4, pp. 342–374, Jan. 1938, doi: 10.2307/2785588.

[94] Connor, E. F. and Simberloff, D., “The Assembly of Species Communities: Chance or Competition?” Ecology, vol. 60, no. 6, pp. 1132–1140, Dec. 1979, doi: 10.2307/1936961.

[95] B. Bollobás, “A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs,” Eur. J. Comb., vol. 1, no. 4, pp. 311–316, Dec. 1980, doi: 10.1016/s0195-6698(80)80030-8.

[96] Caldarelli, G. and Chessa, A., Data Science and Complex Networks. Oxford University Press, 2016.

[97] Catanzaro, M., Boguñá, M., and Pastor-Satorras, R., “Generation of uncorrelated random scale-free networks,” Phys. Rev. E, vol. 71, no. 2, Feb. 2005, doi: 10.1103/physreve.71.027103.

[98] “Wikipedia entry on degree-preserving randomization.”

[99] Li, Z., Mucha, P. J., and Taylor, D., “Network-Ensemble Comparisons with Stochastic Rewiring and Von Neumann Entropy,” SIAM J. Appl. Math., vol. 78, no. 2, pp. 897–920, Mar. 2018, doi: 10.1137/17M1124218.

[100] Carstens, C. J. and Horadam, K. J., “Switching edges to randomize networks: What goes wrong and how to fix it,” J. Complex Netw., vol. 5, no. 3, pp. 337–351, Oct. 2016, doi: 10.1093/comnet/cnw027.

[101] Artzy-Randrup, Y. and Stone, L., “Generating uniformly distributed random networks,” Phys. Rev. E, vol. 72, no. 5, p. 056708, Nov. 2005, doi: 10.1103/PhysRevE.72.056708.

[102] “Igraph function for randomly rewiring links.”

[104] Coolen, A. C. C., De Martino, A., and Annibale, A., “Constrained Markovian Dynamics of Random Graphs,” J. Stat. Phys., vol. 136, no. 6, pp. 1035–1067, Sep. 2009, doi: 10.1007/s10955-009-9821-2.

[105] Liu, B., Xu, S., Li, T., Xiao, J., and Xu, X.-K., “Quantifying the Effects of Topology and Weight for Link Prediction in Weighted Complex Networks,” Entropy, vol. 20, no. 5, p. 363, May 2018, doi: 10.3390/e20050363.

[106] Boguñá, M., Pastor-Satorras, R., and Vespignani, A., “Cut-offs and finite size effects in scale-free networks,” Eur. Phys. J. B, vol. 38, no. 2, pp. 205–209, Mar. 2004, doi: 10.1140/epjb/e2004-00038-8.

[107] S. W. Emmons, “The beginning of connectomics: a commentary on White et al. (1986) ‘The structure of the nervous system of the nematode Caenorhabditis elegans’,” Philos. Trans. R. Soc. Lond. B Biol. Sci., vol. 370, no. 1666, Apr. 2015, doi: 10.1098/rstb.2014.0309.

[108] White, J. G., Southgate, E., Thomson, J.N., and Brenner, S., “The structure of the nervous system of the nematode Caenorhabditis elegans,” Philos. Trans. R. Soc. Lond. B Biol. Sci., vol. 314, no. 1165, Nov. 1986, doi: 10.1098/rstb.1986.0056.

[109] Cook, S. J. et al., “Whole-animal connectomes of both Caenorhabditis elegans sexes,” Nature, vol. 571, no. 7763, pp. 63–71, Jul. 2019, doi: 10.1038/s41586-019-1352-7.

[110] F. Reif, Fundamentals of statistical and thermal physics. McGraw-Hill, Inc., 1965 [Online]. Available:

[111] M. Kardar, Statistical Physics of Particles. Cambridge University Press, 2007.

[112] W. T. Grandy, Foundations of Statistical Mechanics. D. Reidel Publishing Company, 1987.

[113] Rinaldo, A., Petrović, S., and Fienberg, S. E., “Maximum lilkelihood estimation in the \(\beta\)-model,” Ann. Statist., vol. 41, no. 3, pp. 1085–1110, Jun. 2013, doi: 10.1214/12-AOS1078.

[114] Squartini, T. and Garlaschelli, D., “Analytical maximum-likelihood method to detect patterns in real networks,” New J. Phys., vol. 13, no. 8, p. 083001, Aug. 2011, doi: 10.1088/1367-2630/13/8/083001.

[115] E. T. Jaynes, Papers on probability, statistics and statistical physics. Kluwer Academic Publisher, 1989.

[116] Bianconi, G. and Barabási, A.-L., “Bose-Einstein Condensation in Complex Networks,” Phys. Rev. Lett., vol. 86, no. 24, pp. 5632–5635, Jun. 2001, doi: 10.1103/PhysRevLett.86.5632.

[117] Nicolosi, A., Leite, M. L. C., Musicco, M., Arici, C., Gavazzeni, G., and Lazzarin, A., “The Efficiency of Male-to-Female and Female-to-Male Sexual Transmission of the Human Immunodeficiency Virus: A Study of 730 Stable Couples,” Epidemiology, vol. 5, no. 6, pp. 570–575, Nov. 1994, doi: 10.2307/3702292.

[118] Guimerà, R., Mossa, S., Turtschi, A., and Amaral, L. A. N., “The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles,” Proc. Natl. Acad. Sci. U.S.A., vol. 102, no. 22, pp. 7794–7799, May 2005, doi: 10.1073/pnas.0407994102.

[119] Goh, K.-I., Kahng, B., and Kim, D., “Universal Behavior of Load Distribution in Scale-Free Networks,” Phys. Rev. Lett., vol. 87, no. 27, p. 278701, Dec. 2001, doi: 10.1103/PhysRevLett.87.278701.

[120] Holme, P., Kim, B. J., Yoon, C. N., and Han, S. K., “Attack vulnerability of complex networks,” Phys. Rev. E, vol. 65, no. 5, p. 056109, May 2002, doi: 10.1103/PhysRevE.65.056109.

[121] Barrat, A., Barthélemy, M., and Vespignani, A., “The effects of spatial constraints on the evolution of weighted complex networks,” J. Stat. Mech: Theory Exp., vol. 2005, no. 5, p. P05003, May 2005, doi: 10.1088/1742-5468/2005/05/p05003.

[122] M. Barthélemy, “Spatial networks,” Phys. Rep., vol. 499, no. 1, pp. 1–101, Feb. 2011, doi: 10.1016/j.physrep.2010.11.002.

[123] Mastrandrea, R., Squartini, T., Fagiolo, G., and Garlaschelli, D., “Enhanced reconstruction of weighted networks from strengths and degrees,” New J. Phys., vol. 16, no. 4, p. 043022, Apr. 2014, doi: 10.1088/1367-2630/16/4/043022.

[124] “Openflights database.”

[125] “Flightaware flight tracker.”

[126] “Brazilian institute of geography and statistics.”

[127] “Brazilian national agency of land transport.”

[128] “Open data portal of the british goverment.”

[129] “Information about regular bus networks from the spanish goverment.”

[130] Fronczak, P., Fronczak, A., and Bujok, M., “Exponential random graph models for networks with community structure,” Phys. Rev. E, vol. 88, no. 3, p. 032810, Sep. 2013, doi: 10.1103/PhysRevE.88.032810.

[131] Mossong, J. et al., “Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases,” PLoS Med., vol. 5, no. 3, p. e74, Mar. 2008, doi: 10.1371/journal.pmed.0050074.

[132] De Luca, G. et al., “The impact of regular school closure on seasonal influenza epidemics: a data-driven spatial transmission model for Belgium,” BMC Infect. Dis., vol. 18, no. 1, pp. 1–16, Dec. 2018, doi: 10.1186/s12879-017-2934-3.

[133] J. M. Hilbe, Negative Binomial Regression. Cambridge University Press, 2011.

[134] Arregui, S., Aleta, A., Sanz, J., and Moreno, Y., “Projecting social contact matrices to different demographic structures,” PLoS Comput. Biol., vol. 14, no. 12, pp. 1–18, Dec. 2018, doi: 10.1371/journal.pcbi.1006638.

[135] Wolfe, N. D., Dunavan, C. P., and Diamond, J., “Origins of major human infectious diseases,” Nature, vol. 447, no. 7142, pp. 279–283, May 2007, doi: 10.1038/nature05775.

[136] J. N. Hays, Epidemics and Pandemics: Their Impacts on Human History. ABC-CLIO, 2005 [Online]. Available:

[137] Barras, V. and Greub, G., “History of biological warfare and bioterrorism,” Clin. Microbiol. Infect, vol. 20, no. 6, pp. 497–502, Jun. 2014, doi: 10.1111/1469-0691.12706.

[138] Nelson, K. E. and Williams, C. M., Infectious disease epidemiology: Theory and practice. Jones & Barlett Learning, 2014.

[139] A. Morabia, A History of Epidemiologic Methods and Concepts. Springer Basel AG, 2004.

[140] I. M. Foppa, A Historical Introduction to Mathematical Modeling of Infectious Diseases. Academic Press, 2016 [Online]. Available:

[141] K. Dietz, “The First Epidemic Model: A Historical Note on P.D. En’ko,” Australian J. Stat., vol. 30A, no. 1, pp. 56–65, May 1988, doi: 10.1111/j.1467-842X.1988.tb00464.x.

[142] W. H. Hamer, “The Miltor Lectures on Epidemic Disease in England - The Evidence of Variability and of Persistency of Type,” The Lancet, vol. 167, no. 4307, pp. 733–739, Mar. 1906, doi: 10.1016/s0140-6736(01)80340-8.

[143] H. Heesterbeek, “The Law of Mass-Action in Epidemiology: A Historical Perspective,” in Ecological paradigms lost, Elsevier, 2005, pp. 81–105.

[144] F. Brauer, “Mathematical epidemiology: Past, present, and future,” Infect. Dis. Model., vol. 2, no. 2, pp. 113–127, May 2017, doi: 10.1016/j.idm.2017.02.001.

[145] Pastor-Satorras, R., Castellano, C., Van Mieghem, P., and Vespignani, A., “Epidemic processes in complex networks,” Rev. Mod. Phys., vol. 87, no. 3, pp. 925–979, Aug. 2015, doi: 10.1103/RevModPhys.87.925.

[146] Van den Broeck, W., Gioannini, C., Gonçalves, B., Quaggiotto, M., Colizza, V., and Vespignani, A., “The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale,” BMC Infect. Dis., vol. 11, no. 1, pp. 1–14, Dec. 2011, doi: 10.1186/1471-2334-11-37.

[147] Zhang, Q. et al., “Spread of Zika virus in the Americas,” Proc. Natl. Acad. Sci. U.S.A., vol. 114, no. 22, May 2017, doi: 10.1073/pnas.1620161114.

[148] Heesterbeek, H. et al., “Modeling infectious disease dynamics in the complex landscape of global health,” Science, vol. 347, no. 6227, Mar. 2015, doi: 10.1126/science.aaa4339.

[149] Arregui, S., Sanz, J., Marinova, D., Martı́n, C., and Moreno, Y., “On the impact of masking and blocking hypotheses for measuring the efficacy of new tuberculosis vaccines,” PeerJ, vol. 4, p. e1513, Feb. 2016, doi: 10.7717/peerj.1513.

[150] Topley, W. W. C. and Wilson, G. S., “The Spread of Bacterial Infection. The Problem of Herd-Immunity,” J. Hyg. (Lond)., vol. 21, no. 3, p. 243, May 1923, doi: 10.1017/s0022172400031478.

[151] C. E. G. Smith, “Prospects for the Control of Infectious Disease,” Proc. R. Soc. Med., vol. 63, no. 11 Pt 2, p. 1181, Nov. 1970, doi: 10.1177/003591577006311P206.

[152] Fine, P., Eames, K., and Heymann, D. L., “‘Herd immunity’: a rough guide,” Clin. Infect. Dis., vol. 52, no. 7, pp. 911–916, Apr. 2011, doi: 10.1093/cid/cir007.

[153] Larson, H. J., Cooper, L. Z., Eskola, J., Katz, S. L., and Ratzan, S., “Addressing the vaccine confidence gap,” The. Lancet, vol. 378, no. 9790, pp. 526–535, Aug. 2011, doi: 10.1016/S0140-6736(11)60678-8.

[154] “Public Health England: measles in England.”

[155] “CDC report on measles cases in 2019.”

[156] Wang, Z. et al., “Statistical physics of vaccination,” Phys. Rep., vol. 664, pp. 1–113, Dec. 2016, doi: 10.1016/j.physrep.2016.10.006.

[157] Kermack, W. O. and McKendrick,A. G., “A contribution to the mathematical theory of epidemics,” Proc. R. Soc. Lond. A, Aug. 1927, doi: 10.1098/rspa.1927.0118.

[158] Diekmann, O., Metz, H., and Heesterbeek, H., “The legacy of Kermack and McKendrick,” in Epidemic models: Their structure and relation to data, D. Mollison, Ed. Cambridge University Press, 1995, pp. 95–115 [Online]. Available:

[159] Arregui, S. et al., “Data-driven model for the assessment of Mycobacterium tuberculosis transmission in evolving demographic structures,” Proc. Natl. Acad. Sci. U.S.A., vol. 115, no. 14, Apr. 2018, doi: 10.1073/pnas.1720606115.

[160] J. D. Murray, Mathematical Biology: I. An Introduction. Springer, 2002.

[161] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U., “Complex networks: Structure and dynamics,” Phys. Rep., vol. 424, no. 4, pp. 175–308, Feb. 2006, doi: 10.1016/j.physrep.2005.10.009.

[162] McCallum, H., Barlow, N., and Hone, J., “How should pathogen transmission be modelled?” Trends Ecol. Evol., vol. 16, no. 6, pp. 295–300, Jun. 2001, doi: 10.1016/S0169-5347(01)02144-9.

[163] R. M. Anderson, “Discussion: The Kermack-McKendrick epidemic threshold theorem,” Bull. Math. Biol., vol. 53, nos. 1-2, p. 1, Mar. 1991, doi: 10.1007/BF02464422.

[164] H. E. Soper, “The Interpretation of Periodicity in Disease Prevalence,” J. Royal Stat. Soc., vol. 92, no. 1, p. 34, 1929, doi: 10.2307/2341437.

[165] M. S. Bartlett, “Measles Periodicity and Community Size,” J. Royal Stat. Soc. A, vol. 120, no. 1, pp. 48–70, 1957, doi: 10.2307/2342553.

[166] T. Britton, “Stochastic epidemic models: A survey,” Math. Biosci., vol. 225, no. 1, pp. 24–35, May 2010, doi: 10.1016/j.mbs.2010.01.006.

[167] Andersson, H. and Britton, T., Stochastic Epidemic Models and Their Statistical Analysis. Springer-Verlag New York, 2000.

[168] N. T. J. Bailey, The Mathematical Theory of Infectious Diseases and its Applications. Charles Griffin & Company LTD, 1975.

[169] N. T. J. Bailey, “An Improbable Path,” in The craft of probabilistic modelling, Springer New York, 1986, pp. 63–87.

[170] Dalziel, B. D., Bjørnstad, N., van Panhuis, W. G., Burke, D. S., Metcalf, C. J. E., and Grenfell, B. T., “Persistent Chaos of Measles Epidemics in the Prevaccination United States Caused by a Small Change in Seasonal Transmission Patterns,” PLoS Comput. Biol., vol. 12, no. 2, Feb. 2016, doi: 10.1371/journal.pcbi.1004655.

[171] A. G. McKendrick, “Applications of Mathematics to Medical Problems,” Proc. Edinburgh Math. Soc., vol. 44, pp. 98–130, Feb. 1926, doi: 10.1017/s0013091500034428.

[172] Aleta, A., Hisi, A. N. S., Meloni, S., Poletto, C., Colizza, V., and Moreno, Y., “Human mobility networks and persistence of rapidly mutating pathogens,” R. Soc. Open Sci., Mar. 2017, doi: 10.1098/rsos.160914.

[173] Keeling, M. J. and Rohani, P., Modeling Infectious Diseases in Humans and Animals. Princeton University Press, 2007.

[174] Edmunds, W. J., O’callaghan, C. J., and Nokes, D. J., “Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections,” Proc. R. Soc. Lond. B, vol. 264, no. 1384, pp. 949–957, Jul. 1997, doi: 10.1098/rspb.1997.0131.

[175] Read, J. M. et al., “Social mixing patterns in rural and urban areas of southern China,” Proc. R. Soc. B, Jun. 2014, doi: 10.1098/rspb.2014.0268.

[176] Béraud, G. et al., “The French Connection: The First Large Population-Based Contact Survey in France Relevant for the Spread of Infectious Diseases,” PLoS One, vol. 10, no. 7, Jul. 2015, doi: 10.1371/journal.pone.0133203.

[177] Ibuka, Y. et al., “Social contacts, vaccination decisions and influenza in Japan,” J. Epidemiol. Community Health, vol. 70, no. 2, pp. 162–167, Feb. 2016, doi: 10.1136/jech-2015-205777.

[178] Kiti, M. C., Kinyanjui, T. M., Koech, D. C., Munywoki, P. K., Medley, G. F., and Nokes, D. J., “Quantifying Age-Related Rates of Social Contact Using Diaries in a Rural Coastal Population of Kenya,” PLoS One, vol. 9, no. 8, Aug. 2014, doi: 10.1371/journal.pone.0104786.

[179] Ajelli, M. and Litvinova, M., “Estimating contact patterns relevant to the spread of infectious diseases in Russia,” J. Theor. Biol., vol. 419, pp. 1–7, Apr. 2017, doi: 10.1016/j.jtbi.2017.01.041.

[180] de Waroux, O. P. et al., “Characteristics of human encounters and social mixing patterns relevant to infectious diseases spread by close contact: a survey in Southwest Uganda,” BMC Infect. Dis., vol. 18, no. 1, pp. 1–12, Dec. 2018, doi: 10.1186/s12879-018-3073-1.

[181] Melegaro, A. et al., “Social Contact Structures and Time Use Patterns in the Manicaland Province of Zimbabwe,” PLoS One, vol. 12, no. 1, p. e0170459, Jan. 2017, doi: 10.1371/journal.pone.0170459.

[182] Leung, K., Jit, M., Lau, E. H. Y., and Wu, J. T., “Social contact patterns relevant to the spread of respiratory infectious diseases in Hong Kong,” Sci. Rep., vol. 7, no. 7974, pp. 1–12, Aug. 2017, doi: 10.1038/s41598-017-08241-1.

[183] Behr, M. A., Edelstein, P. H., and Ramakrishnan, L., “Revisiting the timetable of tuberculosis,” BMJ, vol. 362, 2018, doi: 10.1136/bmj.k2738.

[184] “UN Population Division Database.”

[185] van den Driessche, P. and Watmough, J., “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Math. Biosci., vol. 180, no. 1, pp. 29–48, Nov. 2002, doi: 10.1016/S0025-5564(02)00108-6.

[186] Heffernan, J. M., Smith, R. J., and Wahl, L. M., “Perspectives on the basic reproductive ratio,” J. Royal Soc. Interface, vol. 2, no. 4, pp. 281–293, Jun. 2005, doi: 10.1098/rsif.2005.0042.

[187] Halloran, M. E. and Levin, B. R., “Infectious diseases of humans: Dynamics and control,” Trends in Microbiology, vol. 1, no. 5, pp. 202–203, Aug. 1993, doi: 10.1016/0966-842x(93)90094-8.

[188] Dublin, L. I. and Lotka, A. J., “On the True Rate of Natural Increase,” J. Am. Stat. Assoc., vol. 20, no. 151, p. 305, Sep. 1925, doi: 10.2307/2965517.

[189] R. M. Anderson, “Transmission Dynamics and Control of Infectious Disease Agents,” in Population biology of infectious diseases, 1982, doi: 10.1007/978-3-642-68635-1_9.

[190] J. A. P. Heesterbeek, “A Brief History of R0 and a Recipe for its Calculation,” Acta Biotheor., vol. 50, no. 3, pp. 189–204, Sep. 2002, doi: 10.1023/A:1016599411804.

[191] Heesterbeek, J. A. P. and Dietz, K., “The concept of R0 in epidemic theory,” Statistica Neerlandica, vol. 50, no. 1, pp. 89–110, Mar. 1996, doi: 10.1111/j.1467-9574.1996.tb01482.x.

[192] Diekmann, O., Heesterbeek, J. A. P., and Metz, J. A. J., “On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations,” J. Math. Biol., vol. 28, no. 4, pp. 365–382, Jun. 1990, doi: 10.1007/BF00178324.

[193] P. van den Driessche, “Reproduction numbers of infectious disease models,” Infect. Dis. Model., vol. 2, no. 3, p. 288, Aug. 2017, doi: 10.1016/j.idm.2017.06.002.

[194] Wallinga, J. and Lipsitch, M., “How generation intervals shape the relationship between growth rates and reproductive numbers,” Proc. R. Soc. B, Nov. 2006, doi: 10.1098/rspb.2006.3754.

[195] K. Dietz, “The Incidence of Infectious Diseases under the Influence of Seasonal Fluctuations,” in Mathematical models in medicine, 1976, pp. 1–15, doi: 10.1007/978-3-642-93048-5_1.

[196] Viboud, C., Simonsen, L., and Chowell, G., “A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks,” Epidemics, vol. 15, pp. 27–37, Jun. 2016, doi: 10.1016/j.epidem.2016.01.002.

[197] H. Nishiura, “Correcting the Actual Reproduction Number: A Simple Method to Estimate R0 from Early Epidemic Growth Data,” Int. J. Environ. Res. Public Health, vol. 7, no. 1, p. 291, Jan. 2010, doi: 10.3390/ijerph7010291.

[198] White, L. F. and Pagano, M., “A likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic,” Stat. Med., vol. 27, no. 16, p. 2999, Jul. 2008, doi: 10.1002/sim.3136.

[199] Ma, J., Dushoff, J., Bolker, B. M., and Earn, D. J. D., “Estimating Initial Epidemic Growth Rates,” Bull. Math. Biol., vol. 76, no. 1, pp. 245–260, Jan. 2014, doi: 10.1007/s11538-013-9918-2.

[200] Chowell, G., Sattenspiel, L., Bansal, S., and Viboud, C., “Mathematical models to characterize early epidemic growth: A review,” Phys. Life Rev., vol. 18, pp. 66–97, Sep. 2016, doi: 10.1016/j.plrev.2016.07.005.

[201] Cintrón-Arias, A., Castillo-Chávez, C., Bettencourt, L. M. A., Lloyd, A. L., and Banks, H. T., “The estimation of the effective reproductive number from disease outbreak data,” Math. Biosci. Eng., vol. 6, no. 2, pp. 261–282, Apr. 2009, doi: 10.3934/mbe.2009.6.261.

[202] Nishiura, H. and Chowell, G., “The Effective Reproduction Number as a Prelude to Statistical Estimation of Time-Dependent Epidemic Trends,” in Mathematical and statistical estimation approaches in epidemiology, G. Chowell, J. M. Hyman, L. M. A. Bettencourt, and C. Castillo-Chavez, Eds. Dordrecht: Springer Netherlands, 2009, pp. 103–121.

[203] Chowell, G., Viboud, C., Simonsen, L., and Moghadas, S. M., “Characterizing the reproduction number of epidemics with early subexponential growth dynamics,” J. R. Soc. Interface, vol. 13, Oct. 2016, doi: 10.1098/rsif.2016.0659.

[204] Paine, S. et al., “Transmissibility of 2009 pandemic influenza A(H1N1) in New Zealand: effective reproduction number and influence of age, ethnicity and importations,” Eurosurveillance, vol. 15, no. 24, p. 19591, Jun. 2010, doi: 10.2807/ese.15.24.19591-en.

[205] Wallinga, J. and Teunis, P., “Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control Measures,” Am. J. Epidemiol., vol. 160, no. 6, pp. 509–516, Sep. 2004, doi: 10.1093/aje/kwh255.

[206] Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E., and Getz, W. M., “Superspreading and the effect of individual variation on disease emergence,” Nature, vol. 438, no. 7066, pp. 355–359, Nov. 2005, doi: 10.1038/nature04153.

[207] Longini, I. M., Koopman, J. S., Monto, A. S., and Fox, J. P., “Estimating Household and Community Transmission Parameters for Influenza,” Am. J. Epidemiol., vol. 115, no. 5, pp. 736–751, May 1982, doi: 10.1093/oxfordjournals.aje.a113356.

[208] Cauchemez, S. et al., “Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza,” Proc. Natl. Acad. Sci. U.S.A., vol. 108, no. 7, pp. 2825–2830, Feb. 2011, doi: 10.1073/pnas.1008895108.

[209] Ball, F., Mollison, D., and Scalia-Tomba, G., “Epidemics with two levels of mixing,” Ann. Appl. Probab., vol. 7, no. 1, pp. 46–89, Feb. 1997, doi: 10.1214/aoap/1034625252.

[210] Pellis, L., Ferguson, N. M., and Fraser, C., “Epidemic growth rate and household reproduction number in communities of households, schools and workplaces,” J. Math. Biol., vol. 63, no. 4, pp. 691–734, Oct. 2011, doi: 10.1007/s00285-010-0386-0.

[211] Becker, N. G. and Dietz, K., “The effect of household distribution on transmission and control of highly infectious diseases,” Math. Biosci., vol. 127, no. 2, pp. 207–219, Jun. 1995, doi: 10.1016/0025-5564(94)00055-5.

[212] House, T. and Keeling, M. J., “Deterministic epidemic models with explicit household structure,” Math. Biosci., vol. 213, no. 1, pp. 29–39, May 2008, doi: 10.1016/j.mbs.2008.01.011.

[213] C. Fraser, “Estimating Individual and Household Reproduction Numbers in an Emerging Epidemic,” PLoS One, vol. 2, no. 8, Aug. 2007, doi: 10.1371/journal.pone.0000758.

[214] Ajelli, M. et al., “The 2014 Ebola virus disease outbreak in Pujehun, Sierra Leone: epidemiology and impact of interventions,” BMC Med., vol. 13, no. 1, pp. 1–8, Dec. 2015, doi: 10.1186/s12916-015-0524-z.

[215] Ajelli, M. et al., “Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: a computational modeling analysis,” BMC Med., vol. 14, no. 1, pp. 1–10, Dec. 2016, doi: 10.1186/s12916-016-0678-3.

[216] Fumanelli, L., Ajelli, M., Manfredi, P., Vespignani, A., and Merler, S., “Inferring the Structure of Social Contacts from Demographic Data in the Analysis of Infectious Diseases Spread,” PLoS Comput. Biol., vol. 8, no. 9, pp. 1–10, Sep. 2012, doi: 10.1371/journal.pcbi.1002673.

[217] Merler, S., Ajelli, M., Pugliese, A., and Ferguson, N. M., “Determinants of the Spatiotemporal Dynamics of the 2009 H1N1 Pandemic in Europe: Implications for Real-Time Modelling,” PLoS Comput. Biol., vol. 7, no. 9, Sep. 2011, doi: 10.1371/journal.pcbi.1002205.

[218] Merler, S. and Ajelli, M., “The role of population heterogeneity and human mobility in the spread of pandemic influenza,” Proc. R. Soc. B, Feb. 2010, doi: 10.1098/rspb.2009.1605.

[219] Biggerstaff, M., Cauchemez, S., Reed, C., Gambhir, M., and Finelli, L., “Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature,” BMC Infect. Dis., vol. 14, no. 1, pp. 1–20, Dec. 2014, doi: 10.1186/1471-2334-14-480.

[220] Cowling, B. J., Fang, V. J., Riley, S., Peiris, J. S. M., and Leung, G. M., “Estimation of the serial interval of influenza,” Epidemiology, vol. 20, no. 3, p. 344, May 2009, doi: 10.1097/EDE.0b013e31819d1092.

[221] W. G. Cochran, “The Statistical Analysis of Field Counts of Diseased Plants,” Suppl. J. Royal Stat. Soc., vol. 3, no. 1, pp. 49–67, 1936, doi: 10.2307/2983677.

[222] M. Morris, “Epidemiology and Social Networks:: Modeling Structured Diffusion,” Sociol. Methods Res., vol. 22, no. 1, pp. 99–126, Aug. 1993, doi: 10.1177/0049124193022001005.

[223] K. Dietz, “Epidemics and Rumours: A Survey,” J. Royal Stat. Soc. A, vol. 130, no. 4, pp. 505–528, 1967, doi: 10.2307/2982521.

[224] D. Mollison, “Spatial Contact Models for Ecological and Epidemic Spread,” J. Royal Stat. Soc. B, vol. 39, no. 3, pp. 283–326, 1977, doi: 10.2307/2985089.

[225] Von Bahr, B. and Martin-Löf, A., “Threshold Limit Theorems for Some Epidemic Processes,” Adv. Appl. Probab., vol. 12, no. 2, pp. 319–349, Jun. 1980, doi: 10.2307/1426600.

[226] P. Grassberger, “On the critical behavior of the general epidemic process and dynamical percolation,” Math. Biosci., vol. 63, no. 2, pp. 157–172, Apr. 1983, doi: 10.1016/0025-5564(82)90036-0.

[227] N. T. J. Bailey, “Introduction to the modelling of venereal disease,” J. Math. Biology, vol. 8, no. 3, pp. 301–322, Oct. 1979, doi: 10.1007/BF00276315.

[228] K. Dietz, “Models for Vector-Borne Parasitic Diseases,” in Vito Volterra Symposium on Mathematical Models in Biology, 1980, pp. 264–277, doi: 10.1007/978-3-642-93161-1_15.

[229] Hethcote, H. W. and Yorke, J. A., Gonorrhea Transmission Dynamics and Control. Springer, Berlin, Heidelberg, 1984.

[230] Anderson, R. M., Medley, G. F., May, R. M., and Johnson, A. M., “A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS,” H. Math. Appl. Med. Biol., vol. 3, no. 4, pp. 229–63, 1986, doi: 10.1093/imammb/3.4.229.

[231] May, R. M. and Anderson, R. M., “The transmission dynamics of human immunodeficiency virus (HIV),” Philos. Trans. R. Soc. Lond. B Biol. Sci., vol. 321, pp. 565–607, Oct. 1988, doi: 10.1098/rstb.1988.0108.

[232] G. F. Bolz, “Simulation on random graphs of the epidemic dynamics of sexually transmitted diseases - a new model for the epidemiology of AIDS,” in Stochastics, algebra and analysis in classical and quantum dynamics. Proceedings of the ivth french-german encounter on mathematics and physics., 1988, doi: 10.1007/978-94-011-7976-8_3.

[233] A. S. Klovdahl, “Social networks and the spread of infectious diseases: The AIDS example,” Soc. Sci. Med., vol. 21, no. 11, pp. 1203–1216, Jan. 1985, doi: 10.1016/0277-9536(85)90269-2.

[234] Klovdahl, A. S., Potterat, J. J., Woodhouse, D. E., Muth, J. B., Muth, S. Q., and Darrow, W. W., “Social networks and infectious disease: The Colorado Springs study,” Soc. Sci. Med., vol. 38, no. 1, pp. 79–88, Jan. 1994, doi: 10.1016/0277-9536(94)90302-6.

[235] H. Andersson, “Epidemics in a population with social structures,” Math. Biosci., vol. 140, no. 2, pp. 79–84, Mar. 1997, doi: 10.1016/S0025-5564(96)00129-0.

[236] F. Cohen, “Computer viruses: Theory and experiments,” Computers & Security, vol. 6, no. 1, pp. 22–35, Feb. 1987, doi: 10.1016/0167-4048(87)90122-2.

[237] W. H. Murray, “The application of epidemiology to computer viruses,” Computers & Security, vol. 7, no. 2, pp. 139–145, Apr. 1988, doi: 10.1016/0167-4048(88)90327-6.

[238] Kephart, J. O. and White, S. R., “Directed-graph epidemiological models of computer viruses,” in Proceedings. 1991 ieee computer society symposium on research in security and privacy, 1991, doi: 10.1109/RISP.1991.130801.

[239] Kephart, J. O., Sorkin, G. B., Chess, D. M., and White, S. R., “Fighting Computer Viruses,” Sci. Am., vol. 277, no. 5, pp. 88–93, Nov. 1997, doi: 10.2307/24996006.

[240] Albert, R., Jeong, H., and Barabási, A.-L., “Diameter of the World-Wide Web,” Nature, vol. 401, no. 6749, pp. 130–131, Sep. 1999, doi: 10.1038/43601.

[241] Pastor-Satorras, R. and Vespignani, A., “Epidemic Spreading in Scale-Free Networks,” Phys. Rev. Lett., vol. 86, no. 14, pp. 3200–3203, Apr. 2001, doi: 10.1103/PhysRevLett.86.3200.

[242] Liljeros, F., Edling, C. R., Amaral, L. A. N., Stanley, H. E., and Åberg, Y., “The web of human sexual contacts,” Nature, vol. 411, no. 6840, pp. 907–908, Jun. 2001, doi: 10.1038/35082140.

[243] Dorogovtsev, S. N., Goltsev, A. V., and Mendes, J. F. F., “Critical phenomena in complex networks,” Rev. Mod. Phys., vol. 80, no. 4, pp. 1275–1335, Oct. 2008, doi: 10.1103/RevModPhys.80.1275.

[244] M. E. J. Newman, “Spread of epidemic disease on networks,” Phys. Rev. E, vol. 66, no. 1, p. 016128, Jul. 2002, doi: 10.1103/PhysRevE.66.016128.

[245] Meyers, L. A., Newman, M. E. J., and Pourbohloul, B., “Predicting epidemics on directed contact networks,” J. Theor. Biol., vol. 240, no. 3, pp. 400–418, Jun. 2006, doi: 10.1016/j.jtbi.2005.10.004.

[246] Cozzo, E., Baños, R. A., Meloni, S., and Moreno, Y., “Contact-based social contagion in multiplex networks,” Phys. Rev. E, vol. 88, no. 5, p. 050801, Nov. 2013, doi: 10.1103/PhysRevE.88.050801.

[247] Sanz, J., Xia, C.-Y., Meloni, S., and Moreno, Y., “Dynamics of Interacting Diseases,” Phys. Rev. X, vol. 4, no. 4, p. 041005, Oct. 2014, doi: 10.1103/PhysRevX.4.041005.

[248] Granell, C., Gómez, S., and Arenas, A., “Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks,” Phys. Rev. Lett., vol. 111, no. 12, p. 128701, Sep. 2013, doi: 10.1103/PhysRevLett.111.128701.

[249] J. A. Drewe, “Who infects whom? Social networks and tuberculosis transmission in wild meerkats,” Proc. R. Soc. B, Feb. 2010, doi: 10.1098/rspb.2009.1775.

[250] Kool, J. L. and Weinstein, R. A., “Risk of Person-to-Person Transmission of Pneumonic Plague,” Clin. Infect. Dis., vol. 40, no. 8, pp. 1166–1172, Apr. 2005, doi: 10.1086/428617.

[251] Martinez, V. P. et al., “Person-to-Person Transmission of Andes Virus,” Emerg. Infect. Dis., vol. 11, no. 12, p. 1848, Dec. 2005, doi: 10.3201/eid1112.050501.

[252] Ferraz de Arruda, G., Cozzo, E., Peixoto, T. P., Rodrigues, F. A., and Moreno, Y., “Disease Localization in Multilayer Networks,” Phys. Rev. X, vol. 7, no. 1, p. 011014, Feb. 2017, doi: 10.1103/PhysRevX.7.011014.

[253] Mercken, L., Snijders, T. A. B., Steglich, C., Vartiainen, E., and de Vries, H., “Dynamics of adolescent friendship networks and smoking behavior,” Soc. Netw., vol. 32, no. 1, pp. 72–81, Jan. 2010, doi: 10.1016/j.socnet.2009.02.005.

[254] Weng, L. et al., “The Role of Information Diffusion in the Evolution of Social Networks,” in Proceedings of the 19th acm sigkdd international conference on knowledge discovery and data mining, 2013, pp. 356–364, doi: 10.1145/2487575.2487607.

[255] Magnani, M. and Rossi, L., “The ML-Model for Multi-layer Social Networks,” in 2011 international conference on advances in social networks analysis and mining, 2011, pp. 5–12, doi: 10.1109/ASONAM.2011.114.

[256] Machado, C., Kira, B., Narayanan, V., Kollanyi, B., and Howard, P., “A Study of Misinformation in WhatsApp Groups with a Focus on the Brazilian Presidential Elections,” in Companion proceedings of the 2019 world wide web conference, 2019, pp. 1013–1019, doi: 10.1145/3308560.3316738.

[257] Liu, Q.-H., Ajelli, M., Aleta, A., Merler, S., Moreno, Y., and Vespignani, A., “Measurability of the epidemic reproduction number in data-driven contact networks,” Proc. Natl. Acad. Sci. U.S.A., vol. 115, no. 50, pp. 12680–12685, Dec. 2018, doi: 10.1073/pnas.1811115115.

[258] M. Buchanan, The Social Atom. Bloomsbury, 2007 [Online]. Available:

[259] Castellano, C., Fortunato, S., and Loreto, V., “Statistical physics of social dynamics,” Rev. Mod. Phys., vol. 81, no. 2, pp. 591–646, May 2009, doi: 10.1103/RevModPhys.81.591.

[260] R. H. Knapp, “A Psychology of Rumor,” Public Opin. Q., vol. 8, no. 1, p. 22, 1944, doi: 10.1086/265665.

[261] Daley, D. J. and Kendall, D. G., “Stochastic Rumours,” IMA J. Appl. Math., vol. 1, no. 1, pp. 42–55, Mar. 1965, doi: 10.1093/imamat/1.1.42.

[262] Vosoughi, S., Roy, D., and Aral, S., “The spread of true and false news online,” Science, vol. 359, no. 6380, pp. 1146–1151, Mar. 2018, doi: 10.1126/science.aap9559.

[263] Shao, C., Ciampaglia, G. L., Varol, O., Yang, K.-C., Flammini, A., and Menczer, F., “The spread of low-credibility content by social bots,” Nat. Commun., vol. 9, no. 4787, pp. 1–9, Nov. 2018, doi: 10.1038/s41467-018-06930-7.

[264] “Wikipedia entry on Internet Forums.”

[266] H. Rheingold, The virtual community. Addison-Wesley, 1993 [Online]. Available:

[267] Lee, F. S. L., Vogel, D., and Limayem, M., “Virtual Community Informatics: A Review and Research Agenda,” JITTA, vol. 5, no. 1, p. 5, 2003 [Online]. Available:

[268] C. R. Sunstein, “The Law of Group Polarization,” J. Political Philos., vol. 10, no. 2, pp. 175–195, 1999, doi: 10.2139/ssrn.199668.

[269] Garimella, K., Morales, G. F., Gionis, A., and Mathioudakis, M., “Political Discourse on Social Media,” in Proceedings of the 2018 world wide web conference on world wide web - WWW ’18, 2018, doi: 10.1145/3178876.3186139.

[270] Lotan, G., Graeff, E., Ananny, M., Gaffney, D., Pearce, I., and Boyd, D., “The Arab Spring\(\vert\) The Revolutions Were Tweeted: Information Flows during the 2011 Tunisian and Egyptian Revolutions,” Int. J. Commun., vol. 5, no. 0, p. 31, Sep. 2011 [Online]. Available:

[271] “Incels: A definition and investigation into a dark internet corner.”

[272] Berger, J. A. and Heath, C., “Idea Habitats: How the Prevalence of Environmental Cues Influences the Success of Ideas,” Cogn. Sci, vol. 29, no. 2, pp. 195–221, Mar. 2005, doi: 10.1207/s15516709cog0000_10.

[273] D. Sperber, “Anthropology and Psychology: Towards an Epidemiology of Representations,” Man, vol. 20, no. 1, pp. 73–89, Mar. 1985, doi: 10.2307/2802222.

[274] R. Axelrod, “The Dissemination of Culture: A Model with Local Convergence and Global Polarization,” J. Confl. Resolut, vol. 41, no. 2, pp. 203–226, Apr. 1997, doi: 10.1177/0022002797041002001.

[275] Onnela, J.-P. and Reed-Tsochas, F., “Spontaneous emergence of social influence in online systems,” Proc. Natl. Acad. Sci. U.S.A., vol. 107, no. 43, pp. 18375–18380, Oct. 2010, doi: 10.1073/pnas.0914572107.

[276] C. Dellarocas, “Strategic Manipulation of Internet Opinion Forums: Implications for Consumers and Firms,” Manag. Sci, vol. 52, no. 10, pp. 1577–1593, Oct. 2006, doi: 10.1287/mnsc.1060.0567.

[279] Miotto, J. M. and Altmann, E. G., “Predictability of Extreme Events in Social Media,” PLoS One, vol. 9, no. 11, p. e111506, Nov. 2014, doi: 10.1371/journal.pone.0111506.

[280] Sobkowicz, P., Thelwall, M., Buckley, K., Paltoglou, G., and Sobkowicz, A.s, “Lognormal distributions of user post lengths in Internet discussions - a consequence of the Weber-Fechner law?” EPJ Data Sci., vol. 2, no. 1, pp. 1–20, Dec. 2013, doi: 10.1140/epjds14.

[281] “Statistics of Forocoches.”

[282] Mocanu, D., Baronchelli, A., Perra, N., Gonçalves, B., Zhang, Q., and Vespignani, A., “The Twitter of Babel: Mapping World Languages through Microblogging Platforms,” PLoS One, vol. 8, no. 4, Apr. 2013, doi: 10.1371/journal.pone.0061981.

[283] Morstatter, F., Pfeffer, J., Liu, H., and Carley, K. M., “Is the Sample Good Enough? Comparing Data from Twitter’s Streaming API with Twitter’s Firehose,” in Seventh international aaai conference on weblogs and social media, 2013 [Online]. Available:

[284] Kulkarni, V. and Wang, W. Y., “TFW, DamnGina, Juvie, and Hotsie-Totsie: On the Linguistic and Social Aspects of Internet Slang,” arXiv, Dec. 2017 [Online]. Available:

[285] Kooti, F., Yang, H., Cha, M., Gummadi, K., and Mason, W., “The Emergence of Conventions in Online Social Networks,” in International aaai conference on web and social media, 2012 [Online]. Available:

[286] Amato, R., Lacasa, L., Dı́az-Guilera, A., and Baronchelli, A., “The dynamics of norm change in the cultural evolution of language,” Proc. Natl. Acad. Sci. U.S.A., vol. 115, no. 33, pp. 8260–8265, Aug. 2018, doi: 10.1073/pnas.1721059115.

[287] “Chitikia Insights: The Value of Google Result Positioning.”, 2013.

[288] Rizoiu, M.-A., Lee, Y., and Mishra, S., “Hawkes processes for events in social media,” in Frontiers of multimedia research, ACM, 2017, pp. 191–218.

[289] Medvedev, A. N., Delvenne, J.-C., and Lambiotte, R., “Modelling structure and predicting dynamics of discussion threads in online boards,” J. Complex Networks, vol. 7, no. 1, pp. 67–82, May 2018, doi: 10.1093/comnet/cny010.

[290] A. Reinhart, “A Review of Self-Exciting Spatio-Temporal Point Processes and Their Applications,” Stat. Sci., vol. 33, no. 3, pp. 299–318, Aug. 2018, doi: 10.1214/17-STS629.

[291] Daley, D. J. and Vere-Jones, D., An Introduction to the Theory of Point Processes - Volume I: Elementary Theory and Methods. Springer-Verlag New York, 2003.

[292] A. G. Hawkes, “Spectra of Some Self-Exciting and Mutually Exciting Point Processes,” Biometrika, vol. 58, no. 1, pp. 83–90, Apr. 1971, doi: 10.2307/2334319.

[293] Laub, P. J., Taimre, T., and Pollett, P. K., “Hawkes Processes,” arXiv. 2015 [Online]. Available:

[294] Filimonov, V. and Sornette, D., “Quantifying reflexivity in financial markets: Toward a prediction of flash crashes,” Phys. Rev. E, vol. 85, no. 5, May 2012, doi: 10.1103/physreve.85.056108.

[295] Rizoiu, M.-A., Mishra, S., Kong, Q., Carman, M., and Xie, L., “SIR-Hawkes,” in Proceedings of the 2018 world wide web conference on world wide web - WWW ’18, 2018, doi: 10.1145/3178876.3186108.

[296] Y. Ogata, “Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes,” J. Am. Stat. Assoc., vol. 83, no. 401, pp. 9–27, Mar. 1988, doi: 10.1080/01621459.1988.10478560.

[297] “Deep Dive - Y. Ogata’s Residual Analysis for Point Processes.”

[298] T. Ozaki, “Maximum likelihood estimation of Hawkes’ self-exciting point processes,” Ann. Inst. Stat. Math., vol. 31, no. 1, pp. 145–155, Dec. 1979, doi: 10.1007/BF02480272.

[299] Lallouache, M. and Challet, D., “The limits of statistical significance of Hawkes processes fitted to financial data,” Quant. Finance, vol. 16, no. 1, pp. 1–11, Jan. 2016, doi: 10.1080/14697688.2015.1068442.

[300] Cavanaugh, J. E. and Neath, A. A., “The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements,” Wiley Interdiscip. Rev. Comput. Stat., vol. 11, no. 3, Mar. 2019, doi: 10.1002/wics.1460.

[301] F. Papangelou, “Integrability of expected increments of point processes and a related random change of scale,” Trans. Amer. Math. Soc., vol. 165, pp. 483–506, 1972, doi: 10.1090/S0002-9947-1972-0314102-9.

[302] Abrams, D. and Hogg, M. A., “Collective Identity: Group Membership and Self-Conception,” in Blackwell handbook of social psychology: Group processes, Blackwell Publishers Ltd, 2008, pp. 425–460.

[303] G. Le Bon, The Crowd: A Study of the Popular Mind. 1895.

[304] S. Reicher, “The Psychology of Crowd Dynamics,” in Blackwell handbook of social psychology: Group processes, Blackwell Publishers Ltd, 2008, pp. 182–208.

[305] La Macchia, S. T. and Louis, W. R., “Crowd behaviour and collective action,” in Understanding peace and conflict through social identity theory: Contemporary global perspectives, Springer International Publishing, 2016.

[306] Reicher, S., Stott, C., Cronin, P., and Adang, O., “An integrated approach to crowd psychology and public order policing,” Policing, vol. 27, no. 4, pp. 558–572, 2004, doi: 10.1108/13639510410566271.

[307] Kozinets, R. V., Hemetsberger, A., and Schau, H. J., “The wisdom of consumer crowds: Collective innovation in the age of networked marketing,” J. Macromarketing, vol. 28, no. 4, pp. 339–354, 2008, doi: 10.1177/0276146708325382.

[308] von Ahn, L., Maurer, B., McMillen, C., Abraham, D., and Blum, M., “reCAPTCHA: Human-Based Character Recognition via Web Security Measures,” Science, vol. 321, no. 5895, pp. 1465–1468, Sep. 2008, doi: 10.1126/science.1160379.

[309] Baumeister, R. F., Ainsworth, S. E., and Vohs, K. D., “Are groups more or less than the sum of their members? The moderating role of individual identification,” Behav. Brain Sci., vol. 39, p. e137, 2016, doi: 10.1017/S0140525X15000618.

[310] B. Latané, “The psychology of social impact.” Am. Psychol., vol. 36, no. 4, p. 343, 1981, doi: 10.1037/0003-066X.36.4.343.

[311] Quinn, A. J. and Bederson, B. B., “Human Computation: A Survey and Taxonomy of a Growing Field,” in Proceedings of the sigchi conference on human factors in computing systems, 2011, pp. 1403–1412, doi: 10.1145/1978942.1979148.

[312] Malone, T. W., Laubacher, R., and Dellarocas, C., “The collective intelligence genome,” IEEE Eng. Manage. Rev., vol. 38, no. 3, pp. 38–52, Aug. 2010, doi: 10.1109/EMR.2010.5559142.

[313] Mason, W. and Watts, D. J., “Financial incentives and the ‘performance of crowds’,” in Proceedings of the ACM SIGKDD workshop on human computation - HCOMP ’09, 2009, doi: 10.1145/1600150.1600175.

[314] C. Prendergast, “The Provision of Incentives in Firms,” J. Econ. Lit., vol. 37, no. 1, pp. 7–63, Mar. 1999, doi: 10.1257/jel.37.1.7.

[315] Heyman, J. and Ariely, D., “Effort for payment: A tale of two markets,” Psychol. Sci., vol. 15, no. 11, pp. 787–793, 2004, doi: 10.1111/j.0956-7976.2004.00757.x.

[316] Gneezy, U. and Rustichini, A., “Pay enough or don’t pay at all,” Q. J. Econ, vol. 115, no. 3, pp. 791–810, 2000, doi: 10.1162/003355300554917.

[317] Kittur, A. et al., “The future of crowd work,” in Proceedings of the 2013 conference on computer supported cooperative work - CSCW ’13, 2013, doi: 10.1145/2441776.2441923.

[318] Peer, E., Brandimarte, L., Samat, S., and Acquisti, A., “Beyond the Turk: Alternative platforms for crowdsourcing behavioral research,” J. Exp. Soc. Psychol, vol. 70, pp. 153–163, May 2017, doi: 10.1016/j.jesp.2017.01.006.

[319] Cox, J. et al., “Defining and Measuring Success in Online Citizen Science: A Case Study of Zooniverse Projects,” Comput. Sci. Eng., vol. 17, no. 4, pp. 28–41, Jul. 2015, doi: 10.1109/MCSE.2015.65.

[320] L. von Ahn, “Games with a Purpose,” Computer, vol. 39, no. 6, pp. 92–94, Jun. 2006, doi: 10.1109/MC.2006.196.

[321] Khatib, F. et al., “Algorithm discovery by protein folding game players,” Proc. Natl. Acad. Sci. U.S.A., vol. 108, no. 47, pp. 18949–18953, Nov. 2011, doi: 10.1073/pnas.1115898108.

[322] Bernstein, M., Tan, D., Smith, G., Czerwinski, M., and Horvitz, E., “Collabio: A Game for Annotating People within Social Networks,” in UIST’09, 2009, doi: 10.1145/1622176.1622195.

[323] Salk, C. F., Sturn, T., See, L., Fritz, S., and Perger, C., “Assessing quality of volunteer crowdsourcing contributions: lessons from the Cropland Capture game,” Int. J. Digital Earth, vol. 9, no. 4, pp. 410–426, Apr. 2016, doi: 10.1080/17538947.2015.1039609.

[324] Birke, A., Schoenau-Fog, H., and Reng, L., “Space Bugz!: A Smartphone-controlled Crowd Game,” in Proceeding of the 16th international academic mindtrek conference, 2012, pp. 217–219, doi: 10.1145/2393132.2393176.

[325] “Description of The Button event.”

[326] Müller, T. F. and Winters, J., “Compression in cultural evolution: Homogeneity and structure in the emergence and evolution of a large-scale online collaborative art project,” PLoS One, vol. 13, no. 9, Sep. 2018, doi: 10.1371/journal.pone.0202019.

[327] Rappaz, J., Catasta, M., West, R., and Aberer, K., “Latent Structure in Collaboration: The Case of Reddit r/place,” arXiv, 2018 [Online]. Available:

[328] Guinness World Records 2015 Gamer’s Edition. Guinness Book, 2014.

[329] “Chat logs and videos of the whole event.”

[330] “Pokémon passes 300 million games sold.”

[331] Althoff, T., White, R. W., and Horvitz, E., “Influence of Poke émon Go on Physical Activity: Study and Implications,” J. Med. Internet Res., vol. 18, no. 12, p. e315, Dec. 2016, doi: 10.2196/jmir.6759.

[332] Sj öblom, M. and Hamari, J., “Why do people watch others play video games? An empirical study on the motivations of Twitch users,” Comput. Hum. Behav, vol. 75, pp. 985–996, Oct. 2017, doi: 10.1016/j.chb.2016.10.019.

[333] “Twitch is 4th in Peak US Internet Traffic.”

[334] Churchill, B. C. B. and Xu, W., “The Modem Nation: A First Study on Twitch.TV Social Structure and Player/Game Relationships,” in 2016 ieee international conferences on big data and cloud computing (bdcloud), social computing and networking (socialcom), sustainable computing and communications (sustaincom) (bdcloud-socialcom-sustaincom), 2016, pp. 223–228, doi: 10.1109/BDCloud-SocialCom-SustainCom.2016.43.

[335] M. Mallory, “Community-based Play in Twitch Plays Pokémon,” in Well played, vol. 3, E. Flynn-Jones, Ed. Pittsburgh, PA: ETC Press, 2015 [Online]. Available:

[336] “Twitch Plays Pokémon timeline.”

[337] “Time needed to finish Pokémon Red.”

[338] M.-V. Lindsey, “The Politics of Pokémon. Socialized Gaming, Religious Themes and the Construction of Communal Narratives,” Heidelberg Journal of Religions on the Internet, 2015, doi: 10.11588/rel.2015.0.18510.

[339] Centola, D. and Baronchelli, A., “The spontaneous emergence of conventions: An experimental study of cultural evolution,” Proc. Natl. Acad. Sci. U.S.A., vol. 112, no. 7, pp. 1989–1994, Feb. 2015, doi: 10.1073/pnas.1418838112.

[340] F. Galton, “Vox populi (The wisdom of crowds),” Nature, vol. 75, no. 7, pp. 450–451, 1907, doi: 10.1038/075450a0.

[341] J. Surowiecki, The wisdom of crowds: Why the many are smarter than the few and how collective wisdom shapes business, economies, societies and nations, vol. 296. United States: Anchor Books, 2004.

[342] Couzin, I. D., Krause, J., Franks, N. R., and Levin, S. A., “Effective leadership and decision-making in animal groups on the move,” Nature, vol. 433, no. 7025, p. 513, 2005, doi: 10.1038/nature03236.

[343] Dyer, J. R. G. et al., “Consensus decision making in human crowds,” Animal Behav., vol. 75, no. 2, pp. 461–470, 2008, doi: 10.1016/j.anbehav.2007.05.010.

[344] Muchnik, L., Aral, S., and Taylor, S. J., “Social Influence Bias: A Randomized Experiment,” Science, vol. 341, no. 6146, pp. 647–651, Aug. 2013, doi: 10.1126/science.1240466.

[345] L. B. Rosenberg, “Human swarming, a real-time method for parallel distributed intelligence,” in 2015 swarm/human blended intelligence workshop (SHBI), 2015, doi: 10.1109/shbi.2015.7321685.

[346] Rosenberg, L., Baltaxe, D., and Pescetelli, N., “Crowds vs swarms, a comparison of intelligence,” in 2016 swarm/human blended intelligence workshop (SHBI), 2016, doi: 10.1109/shbi.2016.7780278.

[347] R. L. M. Lee, “Do online crowds really exist? Proximity, connectivity and collectivity,” Distinktion, vol. 18, no. 1, pp. 82–94, Jan. 2017, doi: 10.1080/1600910X.2016.1218903.

[348] Kirman, B., Lineham, C., and Lawson, S., “Exploring mischief and mayhem in social computing or: How we learned to stop worrying and love the trolls,” in CHI’12 extended abstracts on human factors in computing systems, 2012, pp. 121–130, doi: 10.1145/2212776.2212790.

[349] Paul, H. L., Bowman, N. D., and Banks, J., “The enjoyment of griefing in online games,” J. Gam. Virt. W., vol. 7, no. 3, pp. 243–258, 2015, doi: 10.1386/jgvw.7.3.243_1.

[350] Buckels, E. E., Trapnell, P. D., and Paulhus, D. L., “Trolls just want to have fun,” Pers. Individ. Differ, vol. 67, pp. 97–102, 2014, doi: 10.1016/j.paid.2014.01.016.

[351] Rand, D. G. et al., “Social heuristics shape intuitive cooperation,” Nat. Commun., vol. 5, p. 3677, 2014, doi: 10.1038/ncomms4677.

[352] Yamagishi, T. et al., “Response time in economic games reflects different types of decision conflict for prosocial and proself individuals,” Proc. Natl. Acad. Sci. U.S.A., 2017, doi: 10.1073/pnas.1608877114.

[353] Kameda, T., Tsukasaki, T., Hastie, R., and Berg, N., “Democracy under uncertainty: the wisdom of crowds and the free-rider problem in group decision making,” Psychol. Rev., vol. 118, no. 1, pp. 76–96, Jan. 2011, doi: 10.1037/a0020699.

[354] Hung, A. A. and Plott, C. R., “Information Cascades: Replication and an Extension to Majority Rule and Conformity-Rewarding Institutions,” Am. Econ. Rev, vol. 91, no. 5, pp. 1508–1520, Dec. 2001, doi: 10.1257/aer.91.5.1508.

[355] “A strategy to traverse the ledge.”

[356] R. W. White, “Motivation Reconsidered: The Concept of Competence,” Psychol. Rev., vol. 66, no. 5, pp. 297–333, 1959, doi: 10.1037/h0040934.

[357] Klimmt, C., Hartmann, T., and Frey, A., “Effectance and Control as Determinants of Video Game Enjoyment,” Cyb. Psy. Behav., vol. 10, no. 6, Dec. 2007, doi: 10.1089/cpb.2007.9942.

[358] Mekler, E. D., Bopp, J. A., Tuch, A. N., and Opwis, K., “A systematic review of quantitative studies on the enjoyment of digital entertainment games,” in Proceedings of the 32nd annual acm conference on human factors in computing systems, 2014, pp. 927–936, doi: 10.1145/2556288.2557078.

[359] R. Bartle, “Hearts, clubs, diamonds, spades: Players who suit MUDs,” Jun. 1996 [Online]. Available:

[360] van den Hoogen, W., Poels, K., Ijsselsteijn, W., and de Kort, Y., “Between Challenge and Defeat: Repeated Player-Death and Game Enjoyment,” Media Psychol., vol. 15, no. 4, pp. 443–459, 2012, doi: 10.1080/15213269.2012.723117.

[361] Spears, R. and Postmes, T., “Group Identity, Social Influence and Collective Action Online: Extensions and Applications of the SIDE Model,” in The handbook of the psychology of communication technology, S. Sundar, Ed. Chichester,UK: Wiley-Blackwell, 2015, pp. 23–46.

[362] Conover, M., Ratkiewicz, J., Francisco, M. R., Gonçalves, B., Menczer, F., and Flammini, A., “Political polarization on twitter,” in Proceedings of the fifth international aaai conference on weblogs and social media, 2011, vol. 133, pp. 89–96 [Online]. Available:

[363] Gray, T. J., Danforth, C. M., and Dodds, P. S., “Hahahahaha, Duuuuude, Yeeessss!: A two-parameter characterization of stretchable words and the dynamics of mistypings and misspellings,” arXiv, 2019 [Online]. Available:

[364] Nylund, A. and Landfors, O., “Frustration and its effect on immersion in games: A developer viewpoint on the good and bad aspects of frustration,” Master’s thesis, Umeå University, 2015 [Online]. Available:

[365] “The rise of masocore gaming.”

[366] “Games with Busted Physics and Controls.”